Single-heartbeat electromechanical wave imaging with optimal strain estimation using temporally unequispaced acquisition sequences.

نویسندگان

  • Jean Provost
  • Stéphane Thiébaut
  • Jianwen Luo
  • Elisa E Konofagou
چکیده

Electromechanical Wave Imaging (EWI) is a non-invasive, ultrasound-based imaging method capable of mapping the electromechanical wave (EW) in vivo, i.e. the transient deformations occurring in response to the electrical activation of the heart. Optimal imaging frame rates, in terms of the elastographic signal-to-noise ratio, to capture the EW cannot be achieved due to the limitations of conventional imaging sequences, in which the frame rate is low and tied to the imaging parameters. To achieve higher frame rates, EWI is typically performed by combining sectors acquired during separate heartbeats, which are then combined into a single view. However, the frame rates achieved remain potentially sub-optimal and this approach precludes the study of non-periodic arrhythmias. This paper describes a temporally unequispaced acquisition sequence (TUAS) for which a wide range of frame rates are achievable independently of the imaging parameters, while maintaining a full view of the heart at high beam density. TUAS is first used to determine the optimal frame rate for EWI in a paced canine heart in vivo and then to image during ventricular fibrillation. These results indicate how EWI can be optimally performed within a single heartbeat, during free breathing and in real time, for both periodic and non-periodic cardiac events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic precision analysis of 2D cardiac strain estimation in vivo.

Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precisi...

متن کامل

Electromechanical wave imaging for arrhythmias.

Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging modality for mapping of the electromechanical wave (EW), i.e. the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in prior studies. However, the methods used previously to map the EW required the reconstru...

متن کامل

Improved cine displacement-encoded MRI using balanced steady-state free precession and time-adaptive sensitivity encoding parallel imaging at 3 T.

Cine displacement-encoded MRI is a promising modality for quantifying regional myocardial function. However, it has two major limitations: low signal-to-noise ratio (SNR) and data acquisition efficiency. The purpose of this study was to incrementally improve the SNR and the data acquisition efficiency of cine displacement-encoded MRI through the combined use of balanced steady-state free preces...

متن کامل

The Effect of Bronchial Asthma on Interatrial Electromechanical Delay Coupling Obtained Using Tissue Doppler Imaging

Background: Asthma is a predisposing factor for the development of atrial fibrillation. Asthma disturbs the electrophysiology in the right and left atrium. The aim of this study was to evaluate atrial electromechanical delay by coupling obtained from tissue Doppler imaging (TDI) in children. Methods: A cross-sectional study was conducted on 50 patients with Bronchial Asthma, compared with 50 hea...

متن کامل

Ultrafast vascular strain compounding using plane wave transmission.

Deformations of the atherosclerotic vascular wall induced by the pulsating blood can be estimated using ultrasound strain imaging. Because these deformations indirectly provide information on mechanical plaque composition, strain imaging is a promising technique for differentiating between stable and vulnerable atherosclerotic plaques. This paper first explains 1-D radial strain estimation as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 57 4  شماره 

صفحات  -

تاریخ انتشار 2012